Как найти область определения функции примеры

Область определения функции с корнем

Функция с квадратным корнем определена только при тех значениях «икс», когдаподкоренное выражение неотрицательно: . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . Аналогичные выкладки справедливы для любого корня положительной чётной степени: , правда, корень уже 4-ой степени в исследованиях функций не припоминаю.

Пример 5

Найти область определения функции

Решение: подкоренное выражение должно быть неотрицательным:

Прежде чем продолжить решение, напомню основные правила работы с неравенствами, известные ещё со школы.

Обращаю особое внимание! Сейчас рассматриваются неравенства с одной переменной – то есть для нас существует только одна размерность по оси . Пожалуйста, не путайте снеравенствами двух переменных, где геометрически задействована вся координатная плоскость. Однако есть и приятные совпадения! Итак, для неравенства равносильны следующие преобразования:

1) Слагаемые можно переносить из части в часть со сменой знака.

2) Обе части неравенства можно умножить на положительное число.

3) Если обе части неравенства умножить на отрицательное число, то необходимо сменитьзнак самого неравенства. Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

В неравенстве перенесём «тройку» в правую часть со сменой знака (правило №1):

Умножим обе части неравенства на –1 (правило №3):

Умножим обе части неравенства на (правило №2):

Ответ: область определения:

Ответ также можно записать эквивалентной фразой: «функция определена при ».
Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае:

Ещё раз напоминаю геометрический смысл области определения – график функции существует только на заштрихованном участке и отсутствует при .

В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сильно заморочена, следует чертить ось и делать пометки.

Пример 6

Найти область определения функции

Это пример для самостоятельного решения.

Когда под квадратным корнем находится квадратный двучлен или трёхчлен, ситуация немного усложняется, и сейчас мы подробно разберём технику решения:

Пример 7

Найти область определения функции

Решение: подкоренное выражение должно быть строго положительным, то есть нам необходимо решить неравенство . На первом шаге пытаемся разложить квадратный трёхчлен на множители:

Дискриминант положителен, ищем корни:

Таким образом, парабола пересекает ось абсцисс в двух точках, а это значит, что часть параболы расположена ниже оси (неравенство ), а часть параболы – выше оси (нужное нам неравенство ).

Поскольку коэффициент , то ветви параболы смотрят вверх. Из вышесказанного следует, что на интервалах выполнено неравенство (ветки параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке ниже оси абсцисс, что соответствует неравенству :

! Примечание: если вам не до конца понятны объяснения, пожалуйста, начертите вторую ось и параболу целиком! Целесообразно вернуться к статье Графики и свойства элементарных функций и методичке Горячие формулы школьного курса математики.

Обратите внимание, что сами точки выколоты (не входят в решение), поскольку неравенство у нас строгое.

Ответ: область определения:

Вообще, многие неравенства (в том числе рассмотренное) решаются универсальнымметодом интервалов, известным опять же из школьной программы. Но в случаях квадратных дву- и трёхчленов, на мой взгляд, гораздо удобнее и быстрее проанализировать расположение параболы относительно оси . А основной способ – метод интервалов мы детально разберём в статье Нули функции. Интервалы знакопостоянства.

Пример 8

Найти область определения функции

Это пример для самостоятельного решения. В образце подробно закомментирована логика рассуждений + второй способ решения и ещё одно важное преобразование неравенства, без знания которого студент будет хромать на одну ногу…, …хмм… на счёт ноги, пожалуй, погорячился, скорее – на один палец. Большой палец.

Может ли функция с квадратным корнем быть определена на всей числовой прямой? Конечно. Знакомые всё лица: . Или аналогичная сумма с экспонентой: . Действительно, для любых значения «икс» и «ка»: , поэтому подАвно и .

А вот менее очевидный пример: . Здесь дискриминант отрицателен (парабола не пересекает ось абсцисс), при этом ветви параболы направлены вверх, следовательно, и область определения: .

Вопрос противоположный: может ли область определения функции быть пустой? Да, и сразу напрашивается примитивный пример , где подкоренное выражение отрицательно при любом значении «икс», и область определения: (значок пустого множества). Такая функция не определена вообще (разумеется, график тоже иллюзорен).

С нечётными корнями и т.д. всё обстоит гораздо лучше – тут подкоренное выражение может быть и отрицательным. Например, функция определена на всей числовой прямой. Однако у функции единственная точка всё же не входит в область определения, поскольку обращают знаменатель в ноль. По той же причине для функции исключаются точки .

Некоторым посетителям сайта рассматриваемые примеры покажутся элементарными и примитивными, но в этом нет случайности – во-первых, я стараюсь «заточить» материал для нубов, а во-вторых, подбираю реалистичные вещи под грядущие задачи: полное исследование функции, нахождение области определения функции двух переменныхи некоторые другие. Всё в математике цепляется друг за дружку. Хотя любители трудностей тоже не останутся обделёнными, более солидные задания встретятся и здесь, и на уроке
о методе интервалов.

studopedia.ru

Область определения функции

Область определения или область задания функции — множество, на котором задаётся функция. В каждой точке этого множества значение функции должно быть определено.

Определение

Если на множестве X {\displaystyle X} задана функция, которая отображает множество X {\displaystyle X} в другое множество, то множество X {\displaystyle X} называется областью определения или областью задания функции.

Более формально, если задана функция f {\displaystyle f} , которая отображает множество X {\displaystyle X} в Y {\displaystyle Y} , то есть: f : X → Y {\displaystyle f\colon X\to Y} , то

  • множество X {\displaystyle X} называется областью определения[1] или областью задания[2] функции f {\displaystyle f} и обозначается D ( f ) {\displaystyle D(f)} или d o m f {\displaystyle \mathrm {dom} \,f} (от англ. domain — «область»).

Иногда рассматривают функции, определенные на подмножестве D {\displaystyle D} некоторого множества X {\displaystyle X} . В этом случае множество X {\displaystyle X} иногда называют областью отправления функции f {\displaystyle f} [3].

Примеры

Наиболее наглядные примеры областей определения доставляют числовые функции. Мера и функционал также доставляют важные в приложениях виды областей определения.

Числовые функции

Числовые функции — это функции, относящиеся к следующим двум классам:

  • вещественнозначные функции вещественного переменного — это функции вида f : R → R {\displaystyle f\colon \mathbb {R} \to \mathbb {R} } ;
  • а также комплекснозначные функции комплексного переменного вида f : C → C {\displaystyle f\colon \mathbb {C} \to \mathbb {C} } ,

где R {\displaystyle \mathbb {R} } и C {\displaystyle \mathbb {C} }  — множества вещественных и комплексных чисел соответственно.

Тождественное отображение

Область определения функции f ( x ) = x {\displaystyle f(x)=x} совпадает с областью отправления ( R {\displaystyle \mathbb {R} } или C {\displaystyle \mathbb {C} } ).

Гармоническая функция

Область определения функции f ( x ) = 1 / x {\displaystyle f(x)=1/x} представляет собой комплексную плоскость без нуля:

d o m f = C ∖ { 0 } {\displaystyle \mathrm {dom} \,f=\mathbb {C} \setminus \{0\}} ,

поскольку формула не задаёт значение функции в нуле каким-нибудь числом, что требуется в формулировке понятия функции. Область отправления представляет собой всю комплексную плоскость.

Дробно-рациональные функции

Область определения функции вида

f ( x ) = a 0 + a 1 x + ⋯ + a m x m b 0 + b 1 x + ⋯ + b n x n {\displaystyle f(x)={\frac {a_{0}+a_{1}x+\dots +a_{m}x^{m}}{b_{0}+b_{1}x+\dots +b_{n}x^{n}}}}

представляет собой вещественную прямую или комплексную плоскость за исключением конечного числа точек, которые являются решениями уравнения

b 0 + b 1 x + ⋯ + b n x n = 0 {\displaystyle b_{0}+b_{1}x+\dots +b_{n}x^{n}=0} .

Эти точки называются полюсами функции f {\displaystyle f} .

Так, например, f ( x ) = 2 x x 2 − 4 {\displaystyle f(x)={\frac {2x}{x^{2}-4}}} определен на всех точках, где знаменатель не обращается в ноль, то есть, где x 2 − 4 ≠ 0 {\displaystyle x^{2}-4\neq 0} . Таким образом d o m f {\displaystyle \mathrm {dom} \,f} является множеством всех действительных (или комплексных) чисел кроме 2 и -2.

Мера

Если каждая точка области определения функции — это некоторое множество, например, подмножество заданного множества, то говорят, задана функция множества.

Мера — пример такой функции, где в качестве области определения функции (меры) выступает некоторая совокупность подмножеств заданного множества, являющееся, например, кольцом или полукольцом множеств.

Например, определённый интеграл представляет собой функцию ориентированного промежутка.

Функционал

Пусть F = { f ∣ f : X → R } {\displaystyle \mathbb {F} =\{f\mid f\colon X\to \mathbb {R} \}}  — семейство отображений из множества X {\displaystyle X} в множество R {\displaystyle \mathbb {R} } . Тогда можно определить отображение вида F : F → R {\displaystyle F\colon \mathbb {F} \to \mathbb {R} } . Такое отображение называется функционалом.

Если, например, фиксировать некоторую точку x 0 ∈ X {\displaystyle x_{0}\in ~X} , то можно определить функцию F ( f ) = f ( x 0 ) {\displaystyle F(f)=f(x_{0})} , которая принимает в «точке» f {\displaystyle f} то же значение, что и сама функция f {\displaystyle f} в точке x 0 {\displaystyle x_{0}} .

ru.wikipedia.org

Как найти область определения функции и что это вообще такое???

Naumenko

область определения функции это допустимые значения х. те вопрос можно сформулировать - при каких значениях х выполнимы все действия. записанные в формуле функции. разберем на примерах:
у=кх+в линейная функция. действия: умножение К*х и сложение ( вычитания. все действия выполнимы. в общем случае Д (Х) от минус до плюс бесконечности.
у=к\х деление на ноль не допускается. тч Д (х) х не равен нулю
для у=Vx, где буква V как знак квадратного корня Д (х) х больше или равен нулю.
Для у=ах"2+вх+с и у =ах"3 область определения от минус до плюс бесконечности. тк все действия выполнимы.

Алексей гостев

Область определения функции – это множество всех тех значений переменной х, при каких функция f(x) имеет смысл. ) Если в функции есть корень чётной степени, то подкоренное выражение должно быть больше нуля.
2) Если в функции есть дробь, то её знаменатель не должен быть равен нулю.
3) Если в функции содержится выражение f(x) в степени g(x), то f(x) больше, либо равна нулю, причём f(x) и g(x) одновременно не равны нулю.
4) Если в функции имеются функции с ограниченной областью определения, то область определения исходной функции не шире их области определения. (Например, обратные тригонометрические функции или функции tg(x), ctg(x) и т. д.)

Следственный эксперимент

А книжку открыть слабО?
Для школы достаточно такого "определения":
это множество тех значений аргумента "х", которые он может принимать. Например:
у=1/х. Значение х=1 входит в область определения, а х=0 - не входит, потому что деление на 0 запрещено. Ясно, что ООФ этой фуекции будет "х - любое число, кроме нуля".

Как найти область определения функции?

Желательно привести примеры.

Алекс-89

Нужно посмотреть, какой вид имеет функция.

Часто область определения функции просят найти у функций, которые являются дробями, либо же являются иррациональными (содержат один или несколько радикалов), либо содержат логарифм.

Итак, рассмотрим эти три основных случая:

1) если функция имеет вид дроби (дробно-рациональная функция), то её область определения есть то множество значений аргумента, при котором знаменатель не обращается нулю.

Например, функция y = 1/[(x – 1)(x + 2)].

Знаменатель этой функции превращается в нуль при x = –2 и при x = 1.

Следовательно, область определения данной функции будет множество: (-беск.; –2) U (–2; 1) U (1; +беск.)

На числитель можно вообще не обращать внимания. Он не играет роли.

2) если функция содержит хотя бы один радикал чётной степени, то областью её определения будет являться множество значений аргумента, при котором значение каждого радикала чётной степени больше или равно нулю.

Буду обозначать знак корня как sqrt.

Например, имеем функцию: y = [sqrt (x – 3)]*[ sqrt (5 – x)]

Радикал имеет смысл, когда подрадикальное выражение неотрицательно.

А значит, первый радикал имеет смысл при x >= 3, второй — при x

Для того чтобы найти область определения данной функции, нужно найти пересечение этих двух множеств. Оно равно [3; 5].

Итак, областью определения функции y = [sqrt (x – 3)]*[ sqrt (5 – x)] равняется множество [3; 5].

3) если функция представляет собой логарифм, то её областью определения служит множество, при котором логарифмируемое выражение строго положительно.

Например, функция y = lg (x – 16). Её областью определения является множество (16; + беск.). Скобка при числе 16 круглая, потому что логарифмируемое выражение должно быть строго больше нуля.

В большинстве прочих случаев (то есть когда функция не содержит ни дробей, ни корней, ни логарифмов)— множеством определения функции является вся числовая прямая.

Например, у функции y = x^3 – 6x^2 + 7 область определения равна R.

bolshoyvopros.ru

ЛогВики